


f//’/%ﬁﬂk == Jfﬁﬁ/////%///
CURL OF AVECTOR AND STOKES'S THEOREM

;mMWﬂﬁ%ﬁwﬂM(i&wmaﬂ%ﬂn%ﬁ%”fﬁvmmT#:;Eﬁ
cilationof A mmmasmemmmw vhos mm&w il
diecion o Of the aa ?fliﬂ! ﬂlﬂ m lﬁ orinted .3 to make the cirlation
el e s e




To obtain an expression for V X A from the definition in eq. (3.45), consider the dif-
ferential area in the yz-plane as in Figure 3.18. The line integral in eq. (3.45) is obtained as

{A*dlzu +[ +J +J)A-dl (3.46)
L ab be cd da

We expand the field components in a Taylor series expansion about the center point
P(xy, Yoy 20) @ in eq. (3.34) and evaluate eq. (3.46). On side ab, dl = dya, and
1=12,— di2, 50

dz 0A,

A-dl=dylA, - —
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On side da, d1 = dza.and y = y, — dy/2, s0

a
J. A-dl=~d: [Az(xm Vos Zo) — @j—z

x J (3.50)
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Substituting egs. (3.47) to (3.50) into eq. (3.46) and noting that AS = dy dz, we have

+ % A-dl  0A, 04,
lim = =
as-0 |, AS dy 0z
or
dA, 94,
(curlA), = — — — (3.51)
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e The y- and r-components of the curl of A can be found in the same way. We obtain

o, dA,

(curl A), = PN (3.52a)
dA, 04,

(curlA), = — - — (3.52b)
dx  dy

The definition of V X A in eg. (3.45) is independent of the coordinate system. In
Cartesian coordinates the curl of A is easily found using

TXA= = —

p (3.93)
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